Dimension Amnesic Pyramid Match Kernel
نویسندگان
چکیده
With the success of local features in object recognition, feature-set representations are widely used in computer vision and related domains. Pyramid match kernel (PMK) is an efficient approach to quantifying the similarity between two unordered feature-sets, which allows well established kernel machines to learn with such representations. However, the approximation of PMK to the optimal feature matches deteriorates linearly with the dimension of local features, which prohibits the direct use of high dimensional features. In this paper, we propose a general, data-independent kernel to quantify the feature-set similarities, which gives an upper bound of approximation error independent of the dimension of local features. The key idea is to employ the technique of normal random projection to construct a number of low dimensional subspaces, and perform the original PMK algorithm therein. By leveraging on the invariance property of p-stable distributions, our approach achieves the desirable dimension-free property. Extensive experiments on the ETH-80 image database solidly demonstrate the advantage of our approach to high dimensional features.
منابع مشابه
Parallel Spatial Pyramid Match Kernel Algorithm for Object Recognition using a Cluster of Computers
This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help u...
متن کاملThe Pyramid Match Kernel: Efficient Learning with Sets of Features
In numerous domains it is useful to represent a single example by the set of the local features or parts that comprise it. However, this representation poses a challenge to many conventional machine learning techniques, since sets may vary in cardinality and elements lack a meaningful ordering. Kernel methods can learn complex functions, but a kernel over unordered set inputs must somehow solve...
متن کاملPyramid Match Kernels: Discriminative Classification with Sets of Image Features (version 2)
Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernel-based classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondences – generally a computationally expensive task that becomes impractical for large set sizes. We ...
متن کاملComputer Science and Artificial Intelligence Laboratory Pyramid Match Kernels: Discriminative Classification with Sets of Image Features
Discriminative learning is challenging when examples are sets of local image features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernel-based classification methods can learn complex decision boundaries, but a kernel similarity measure for unordered set inputs must somehow solve for correspondences – generally a computationally expensive task that becomes imprac...
متن کاملApproximate Correspondences in High Dimensions
Pyramid intersection is an efficient method for computing an approximate partial matching between two sets of feature vectors. We introduce a novel pyramid embedding based on a hierarchy of non-uniformly shaped bins that takes advantage of the underlying structure of the feature space and remains accurate even for sets with high-dimensional feature vectors. The matching similarity is computed i...
متن کامل